最近总结了一些数据结构和算法相关的题目, 这是第一篇文章, 关于二叉树的.
先上二叉树的数据结构:
- class TreeNode{
- int val;
- // 左孩子
- TreeNode left;
- // 右孩子
- TreeNode right;
- }
二叉树的题目普遍可以用递归和迭代的方式来解
1. 求二叉树的最大深度
- int maxDeath(TreeNode node){
- if(node==null){
- return 0;
- }
- int left = maxDeath(node.left);
- int right = maxDeath(node.right);
- return Math.max(left,right) + 1;
- }
2. 求二叉树的最小深度
- int getMinDepth(TreeNode root){
- if(root == null){
- return 0;
- }
- return getMin(root);
- }
- int getMin(TreeNode root){
- if(root == null){
- return Integer.MAX_VALUE;
- }
- if(root.left == null&&root.right == null){
- return 1;
- }
- return Math.min(getMin(root.left),getMin(root.right)) + 1;
- }
3, 求二叉树中节点的个数
- int numOfTreeNode(TreeNode root){
- if(root == null){
- return 0;
- }
- int left = numOfTreeNode(root.left);
- int right = numOfTreeNode(root.right);
- return left + right + 1;
- }
4, 求二叉树中叶子节点的个数
- int numsOfNoChildNode(TreeNode root){
- if(root == null){
- return 0;
- }
- if(root.left==null&&root.right==null){
- return 1;
- }
- return numsOfNodeTreeNode(root.left)+numsOfNodeTreeNode(root.right);
- }
5. 求二叉树中第 k 层节点的个数
- int numsOfkLevelTreeNode(TreeNode root,int k){
- if(root == null||k<1){
- return 0;
- }
- if(k==1){
- return 1;
- }
- int numsLeft = numsOfkLevelTreeNode(root.left,k-1);
- int numsRight = numsOfkLevelTreeNode(root.right,k-1);
- return numsLeft + numsRight;
- }
6. 判断二叉树是否是平衡二叉树
- boolean isBalanced(TreeNode node){
- return maxDeath2(node)!=-1;
- }
- int maxDeath2(TreeNode node){
- if(node == null){
- return 0;
- }
- int left = maxDeath2(node.left);
- int right = maxDeath2(node.right);
- if(left==-1||right==-1||Math.abs(left-right)>1){
- return -1;
- }
- return Math.max(left, right) + 1;
- }
7. 判断二叉树是否是完全二叉树
什么是完全二叉树呢?
完全二叉树_百度百科
- boolean isCompleteTreeNode(TreeNode root){
- if(root == null){
- return false;
- }
- Queue<TreeNode> queue = new LinkedList<TreeNode>();
- queue.add(root);
- boolean result = true;
- boolean hasNoChild = false;
- while(!queue.isEmpty()){
- TreeNode current = queue.remove();
- if(hasNoChild){
- if(current.left!=null||current.right!=null){
- result = false;
- break;
- }
- }else{
- if(current.left!=null&¤t.right!=null){
- queue.add(current.left);
- queue.add(current.right);
- }else if(current.left!=null&¤t.right==null){
- queue.add(current.left);
- hasNoChild = true;
- }else if(current.left==null&¤t.right!=null){
- result = false;
- break;
- }else{
- hasNoChild = true;
- }
- }
- }
- return result;
- }
8. 两个二叉树是否完全相同
- boolean isSameTreeNode(TreeNode t1,TreeNode t2){
- if(t1==null&&t2==null){
- return true;
- }
- else if(t1==null||t2==null){
- return false;
- }
- if(t1.val != t2.val){
- return false;
- }
- boolean left = isSameTreeNode(t1.left,t2.left);
- boolean right = isSameTreeNode(t1.right,t2.right);
- return left&&right;
- }
9. 两个二叉树是否互为镜像
- boolean isMirror(TreeNode t1,TreeNode t2){
- if(t1==null&&t2==null){
- return true;
- }
- if(t1==null||t2==null){
- return false;
- }
- if(t1.val != t2.val){
- return false;
- }
- return isMirror(t1.left,t2.right)&&isMirror(t1.right,t2.left);
- }
10. 翻转二叉树 or 镜像二叉树
- TreeNode mirrorTreeNode(TreeNode root){
- if(root == null){
- return null;
- }
- TreeNode left = mirrorTreeNode(root.left);
- TreeNode right = mirrorTreeNode(root.right);
- root.left = right;
- root.right = left;
- return root;
- }
11. 求两个二叉树的最低公共祖先节点
- TreeNode getLastCommonParent(TreeNode root,TreeNode t1,TreeNode t2){
- if(findNode(root.left,t1)){
- if(findNode(root.right,t2)){
- return root;
- }else{
- return getLastCommonParent(root.left,t1,t2);
- }
- }else{
- if(findNode(root.left,t2)){
- return root;
- }else{
- return getLastCommonParent(root.right,t1,t2)
- }
- }
- }
- // 查找节点 node 是否在当前 二叉树中
- boolean findNode(TreeNode root,TreeNode node){
- if(root == null || node == null){
- return false;
- }
- if(root == node){
- return true;
- }
- boolean found = findNode(root.left,node);
- if(!found){
- found = findNode(root.right,node);
- }
- return found;
- }
12. 二叉树的前序遍历
迭代解法
- ArrayList<Integer> preOrder(TreeNode root){
- Stack<TreeNode> stack = new Stack<TreeNode>();
- ArrayList<Integer> list = new ArrayList<Integer>();
- if(root == null){
- return list;
- }
- stack.push(root);
- while(!stack.empty()){
- TreeNode node = stack.pop();
- list.add(node.val);
- if(node.right!=null){
- stack.push(node.right);
- }
- if(node.left != null){
- stack.push(node.left);
- }
- }
- return list;
- }
递归解法
- ArrayList<Integer> preOrderReverse(TreeNode root){
- ArrayList<Integer> result = new ArrayList<Integer>();
- preOrder2(root,result);
- return result;
- }
- void preOrder2(TreeNode root,ArrayList<Integer> result){
- if(root == null){
- return;
- }
- result.add(root.val);
- preOrder2(root.left,result);
- preOrder2(root.right,result);
- }
13. 二叉树的中序遍历
- ArrayList<Integer> inOrder(TreeNode root){
- ArrayList<Integer> list = new ArrayList<<Integer>();
- Stack<TreeNode> stack = new Stack<TreeNode>();
- TreeNode current = root;
- while(current != null|| !stack.empty()){
- while(current != null){
- stack.add(current);
- current = current.left;
- }
- current = stack.peek();
- stack.pop();
- list.add(current.val);
- current = current.right;
- }
- return list;
- }
14. 二叉树的后序遍历
- ArrayList<Integer> postOrder(TreeNode root){
- ArrayList<Integer> list = new ArrayList<Integer>();
- if(root == null){
- return list;
- }
- list.addAll(postOrder(root.left));
- list.addAll(postOrder(root.right));
- list.add(root.val);
- return list;
- }
15. 前序遍历和后序遍历构造二叉树
- TreeNode buildTreeNode(int[] preorder,int[] inorder){
- if(preorder.length!=inorder.length){
- return null;
- }
- return myBuildTree(inorder,0,inorder.length-1,preorder,0,preorder.length-1);
- }
- TreeNode myBuildTree(int[] inorder,int instart,int inend,int[] preorder,int prestart,int preend){
- if(instart>inend){
- return null;
- }
- TreeNode root = new TreeNode(preorder[prestart]);
- int position = findPosition(inorder,instart,inend,preorder[start]);
- root.left = myBuildTree(inorder,instart,position-1,preorder,prestart+1,prestart+position-instart);
- root.right = myBuildTree(inorder,position+1,inend,preorder,position-inend+preend+1,preend);
- return root;
- }
- int findPosition(int[] arr,int start,int end,int key){
- int i;
- for(i = start;i<=end;i++){
- if(arr[i] == key){
- return i;
- }
- }
- return -1;
- }
16. 在二叉树中插入节点
- TreeNode insertNode(TreeNode root,TreeNode node){
- if(root == node){
- return node;
- }
- TreeNode tmp = new TreeNode();
- tmp = root;
- TreeNode last = null;
- while(tmp!=null){
- last = tmp;
- if(tmp.val>node.val){
- tmp = tmp.left;
- }else{
- tmp = tmp.right;
- }
- }
- if(last!=null){
- if(last.val>node.val){
- last.left = node;
- }else{
- last.right = node;
- }
- }
- return root;
- }
17. 输入一个二叉树和一个整数, 打印出二叉树中节点值的和等于输入整数所有的路径
- void findPath(TreeNode r,int i){
- if(root == null){
- return;
- }
- Stack<Integer> stack = new Stack<Integer>();
- int currentSum = 0;
- findPath(r, i, stack, currentSum);
- }
- void findPath(TreeNode r,int i,Stack<Integer> stack,int currentSum){
- currentSum+=r.val;
- stack.push(r.val);
- if(r.left==null&&r.right==null){
- if(currentSum==i){
- for(int path:stack){
- System.out.println(path);
- }
- }
- }
- if(r.left!=null){
- findPath(r.left, i, stack, currentSum);
- }
- if(r.right!=null){
- findPath(r.right, i, stack, currentSum);
- }
- stack.pop();
- }
18. 二叉树的搜索区间
给定两个值 k1 和 k2(k1 <k2) 和一个二叉查找树的根节点. 找到树中所有值在 k1 到 k2 范围内的节点. 即打印所有 x (k1 <= x <= k2) 其中 x 是二叉查找树的中的节点值. 返回所有升序的节点值
- ArrayList<Integer> result;
- ArrayList<Integer> searchRange(TreeNode root,int k1,int k2){
- result = new ArrayList<Integer>();
- searchHelper(root,k1,k2);
- return result;
- }
- void searchHelper(TreeNode root,int k1,int k2){
- if(root == null){
- return;
- }
- if(root.val>k1){
- searchHelper(root.left,k1,k2);
- }
- if(root.val>=k1&&root.val<=k2){
- result.add(root.val);
- }
- if(root.val<k2){
- searchHelper(root.right,k1,k2);
- }
- }
19. 二叉树的层次遍历
- ArrayList<ArrayList<Integer>> levelOrder(TreeNode root){
- ArrayList<ArrayList<Integer>> result = new ArrayList<ArrayList<Integer>>();
- if(root == null){
- return result;
- }
- Queue<TreeNode> queue = new LinkedList<TreeNode>();
- queue.offer(root);
- while(!queue.isEmpty()){
- int size = queue.size();
- ArrayList<<Integer> level = new ArrayList<Integer>():
- for(int i = 0;i <size ;i++){
- TreeNode node = queue.poll();
- level.add(node.val);
- if(node.left != null){
- queue.offer(node.left);
- }
- if(node.right != null){
- queue.offer(node.right);
- }
- }
- result.add(Level);
- }
- return result;
- }
20. 二叉树内两个节点的最长距离
二叉树中两个节点的最长距离可能有三种情况:
1. 左子树的最大深度 + 右子树的最大深度为二叉树的最长距离
2. 左子树中的最长距离即为二叉树的最长距离
3. 右子树种的最长距离即为二叉树的最长距离
因此, 递归求解即可
- private static class Result{
- int maxDistance;
- int maxDepth;
- public Result() {
- }
- public Result(int maxDistance, int maxDepth) {
- this.maxDistance = maxDistance;
- this.maxDepth = maxDepth;
- }
- }
- int getMaxDistance(TreeNode root){
- return getMaxDistanceResult(root).maxDistance;
- }
- Result getMaxDistanceResult(TreeNode root){
- if(root == null){
- Result empty = new Result(0,-1);
- return empty;
- }
- Result lmd = getMaxDistanceResult(root.left);
- Result rmd = getMaxDistanceResult(root.right);
- Result result = new Result();
- result.maxDepth = Math.max(lmd.maxDepth,rmd.maxDepth) + 1;
- result.maxDistance = Math.max(lmd.maxDepth + rmd.maxDepth,Math.max(lmd.maxDistance,rmd.maxDistance));
- return result;
- }
21. 不同的二叉树
给出 n, 问由 1...n 为节点组成的不同的二叉查找树有多少种?
- int numTrees(int n ){
- int[] counts = new int[n+2];
- counts[0] = 1;
- counts[1] = 1;
- for(int i = 2;i<=n;i++){
- for(int j = 0;j<i;j++){
- counts[i] += counts[j] * counts[i-j-1];
- }
- }
- return counts[n];
- }
22. 判断二叉树是否是合法的二叉查找树 (BST)
一棵 BST 定义为:
节点的左子树中的值要严格小于该节点的值.
节点的右子树中的值要严格大于该节点的值.
左右子树也必须是二叉查找树.
一个节点的树也是二叉查找树.
- public int lastVal = Integer.MAX_VALUE;
- public boolean firstNode = true;
- public boolean isValidBST(TreeNode root) {
- // write your code here
- if(root==null){
- return true;
- }
- if(!isValidBST(root.left)){
- return false;
- }
- if(!firstNode&&lastVal>= root.val){
- return false;
- }
- firstNode = false;
- lastVal = root.val;
- if (!isValidBST(root.right)) {
- return false;
- }
- return true;
- }
来源: http://www.bubuko.com/infodetail-3037460.html